A Quad-Band Low Power Single Chip Direct Conversion CMOS Transceiver with ΣΔ-Modulation Loop for GSM

Edmund Götz, Hans Kröbel, Günter Märzinger, Bernd Memmler, Christian Münker, Burkhard Neurauter, Dirk Römer, Jörn Rubach, Werner Schelmbauer, Markus Scholz, Martin Simon, Ulrich Steinacker, Claus Stöger

Infineon Technologies AG, Munich, Germany
DICE GmbH & Co KG, Linz, Austria
Outline

• Overview
 – C11 120 nm CMOS Technology
 – Transceiver Architecture

• Block Detail
 – Voltage Controlled Oscillator
 – $\Sigma\Delta$-Phase Locked Loop
 – Power Amplifier

• Performance Summary
C11 120nm CMOS Technology

- 120 nm RF Transistor with $f_T > 100$ GHz ($V_{DD}=1.5V$)
- Oxide thickness 2.8 nm
- 400 nm analogue I/O Transistor ($V_{DD}=2.5V$)
- 6 Copper layers up to 550 nm thick
- MIM CAP (1 fF/um2)
- Diffusion and Polysilicon Resistors
GSM Transceiver Features

- Direct Conversion RX and TX
- Supported Bands 850/900/1800/1900 MHz
- Internal RX and TX VCO
- $\Sigma\Delta$-Modulation Loop for GMSK
- Constant gain receiver for 14 bit ADC
- Part of complete GSM/GPRS Platform
- 48-pin VQFN Plastic Package
VCO with digital bias and band select

- Pushing < 300 kHz/V
- Integrated low noise voltage regulator
- Programmable frequency band (10 bit)
- Programmable bias current
Voltage Controlled Oscillator Core

- Differential Cross Coupled
- MOS Tuning Element
- VCO gain 60 MHz +/-10%
- 1300 MHz frequency range
10 Bit VCO: Frequenz vs. Binärwort

Frequency Accuracy: 2 MHz per bit
Delta-Sigma Frac.-N PLL Modulation Loop

\[\text{fref} = 26 \text{ MHz} \]

20 bit accuwidth in MASH
⇒ high loopfilter suppression needed at 400 kHz, but the modulation needs to have a wide bandwidth!
Concept of Predistortion Filter

\[
\frac{\Phi_{\text{out}}(s)}{\Phi_{\text{ref}}(s)} = N \cdot \frac{1}{1 + \frac{N}{K_P K_{\text{VCO}}} \frac{1}{sZ(s)}} = N \cdot G(s)
\]

\[
f_{\text{out}}(s) = N_{\text{mod}}(s) \cdot f_{\text{ref}} \cdot G(s) \cdot G(s)^{-1} = N_{\text{mod}}(s) \cdot f_{\text{ref}}
\]
Power Amplifier

- Differential Output
 - 1.5 V Supply Voltage
 - Drives 50 Ohm Load
 - Broadband (flat over band)
 - Low Noise

- Separate 900/1800 MHz Outputs
 - 8.5 dBm @ 900 MHz
 - 8 dBm @ 1800 MHz
High margin to GSM Specification due to low phase noise
PLL Settling Time

analog PLL settling time < 80 µs
Chip Photograph
Performance Summary

<table>
<thead>
<tr>
<th></th>
<th>GSM850/GSM900</th>
<th>GSM1800/1900</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>57 dB</td>
<td>57 dB</td>
</tr>
<tr>
<td>Noise Figure</td>
<td>2.6 dB</td>
<td>3 dB</td>
</tr>
<tr>
<td>1 dB Compression</td>
<td>-22 dBm</td>
<td>-22 dBm</td>
</tr>
<tr>
<td>IIP2</td>
<td>50 dBm</td>
<td>50 dBm</td>
</tr>
<tr>
<td>RX Phase Noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ 600 kHz</td>
<td>-129 dBc/Hz</td>
<td>-123 dBc/Hz</td>
</tr>
<tr>
<td>TX Phase Noise</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ 40 kHz</td>
<td>-96 dBc/Hz</td>
<td>-100 dBc/Hz</td>
</tr>
<tr>
<td>@ 20 MHz</td>
<td><-162 dBc/Hz</td>
<td><-157 dBc/Hz</td>
</tr>
<tr>
<td>Phase error</td>
<td>1.4 °</td>
<td>1.6 °</td>
</tr>
<tr>
<td>TX Output Power</td>
<td>8.5 dBm</td>
<td>8 dBm</td>
</tr>
<tr>
<td>Power consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX</td>
<td>210 mW</td>
<td></td>
</tr>
<tr>
<td>RX</td>
<td>250 mW</td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

• Fully integrated GSM CMOS Transceiver
• New TX-architecture with ΣΔ-Modulation Loop
• New constant gain receiver concept
• Complies with GSM Specification